The Bar Complex of an E-infinity Algebra

نویسنده

  • BENOIT FRESSE
چکیده

The standard reduced bar complex B(A) of a differential graded algebra A inherits a natural commutative algebra structure if A is a commutative algebra. We address an extension of this construction in the context of E-infinity algebras. We prove that the bar complex of any E-infinity algebra can be equipped with the structure of an E-infinity algebra so that the bar construction defines a functor from E-infinity algebras to E-infinity algebras. We prove the homotopy uniqueness of such natural E-infinity structures on the bar construction. We apply our construction to cochain complexes of topological spaces, which are instances of E-infinity algebras. We prove that the n-th iterated bar complexes of the cochain algebra of a space X is equivalent to the cochain complex of the n-fold iterated loop space of X, under reasonable connectedness, completeness and finiteness assumptions on X.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterated Bar Complexes of E-infinity Algebras and Homology Theories

We proved in a previous article that the bar complex of an E∞algebra inherits a natural E∞-algebra structure. As a consequence, a welldefined iterated bar construction Bn(A) can be associated to any algebra over an E∞-operad. In the case of a commutative algebra A, our iterated bar construction reduces to the standard iterated bar complex of A. The first purpose of this paper is to give a direc...

متن کامل

The Universal Hopf Operads of the Bar Construction

The goal of this memoir is to prove that the bar complex B(A) of an E-infinity algebra A is equipped with the structure of a Hopf E-infinity algebra, functorially in A. We observe in addition that such a structure is homotopically unique provided that we consider unital operads which come equipped with a distinguished 0-ary operation that represents the natural unit of the bar complex. Our cons...

متن کامل

A-infinity algebras, modules and functor categories

In this survey, we first present basic facts on A-infinity algebras and modules including their use in describing triangulated categories. Then we describe the Quillen model approach to A-infinity structures following K. Lefèvre’s thesis. Finally, starting from an idea of V. Lyubashenko’s, we give a conceptual construction of A-infinity functor categories using a suitable closed monoidal catego...

متن کامل

Combinatorial Operad Actions on Cochains

A classical E-infinity operad is formed by the bar construction of the symmetric groups. Such an operad has been introduced by M. Barratt and P. Eccles in the context of simplicial sets in order to have an analogue of the Milnor FK-construction for infinite loop spaces. The purpose of this article is to prove that the associative algebra structure on the normalized cochain complex of a simplici...

متن کامل

Nonexpansive mappings on complex C*-algebras and their fixed points

A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007